
'XYZ' Instructor Notes

Module 'X' - <name of module> 1

Page 1

Source:
1

Object Oriented Analysis and Design (OOAD)

Introduction to Object Orientation

Source:
2

Objectives: Introduction to Object Orientation

Understand the basic principles of object
orientation
Understand the basic concepts and terms
of object orientation and the associated
UML notation
Appreciate the strengths of object
orientation

'XYZ' Instructor Notes

Module 'X' - <name of module> 2

Page 2

Source:
3

Introduction to Object Orientation Topics

Basic Principles of Object Orientation
Basic Concepts of Object Orientation
Strengths of Object Orientation

Source:
4

Object Orientation

En
ca

ps
ul

at
io

n

Ab
st

ra
ct

io
n

Hi
er

ar
ch

y

M
od

ul
ar

ity

Basic Principles of Object Orientation

'XYZ' Instructor Notes

Module 'X' - <name of module> 3

Page 3

Source:
5

Salesperson

Not saying
Which
salesperson
– just a
salesperson
in general!!!

Customer Product

Manages Complexity

What is Abstraction?

Source:
6

Improves Resiliency

What is Encapsulation?

Hide implementation from clients
Clients depend on interface

How does an object encapsulate?
What does it encapsulate?

'XYZ' Instructor Notes

Module 'X' - <name of module> 4

Page 4

Source:
7

Order Processing
System

Billing

Order
Entry

Order
Fulfillment

Manages Complexity

What is Modularity?

The breaking up of something complex into
manageable pieces

Source:
8

Decreasing
abstraction

Increasing
abstraction

Asset

RealEstate

Savings

BankAccount

Checking Stock

Security

Bond

Elements at the same level of the hierarchy
should be at the same level of abstraction

What is Hierarchy?

Levels of abstraction

'XYZ' Instructor Notes

Module 'X' - <name of module> 5

Page 5

Source:
9

Introduction to Object Orientation Topics

Basic Principles of Object Orientation
Basic Concepts of Object Orientation
Strengths of Object Orientation

Source:
10

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 6

Page 6

Source:
11

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

Source:
12

Truck

Chemical Process

Linked List

What is an Object?

Informally, an object represents an entity,
either physical, conceptual, or software

Physical entity

Conceptual entity

Software entity

'XYZ' Instructor Notes

Module 'X' - <name of module> 7

Page 7

Source:
13

A More Formal Definition

An object is a concept, abstraction, or thing
with sharp boundaries and meaning for an
application
An object is something that has:

State
Behavior
Identity

Source:
14

: Professor

Professor Clark

a + b = 10

ProfessorClark :
Professor

ProfessorClark
Class Name Only

Object Name Only

Class and Object Name (stay tuned for classes)

Representing Objects

An object is represented as rectangles with
underlined names

'XYZ' Instructor Notes

Module 'X' - <name of module> 8

Page 8

Source:
15

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

Source:
16

OO Principle: Abstraction

What is a Class?

A class is a description of a group of objects
with common properties (attributes),
behavior (operations), relationships, and
semantics

An object is an instance of a class
A class is an abstraction in that it:

Emphasizes relevant characteristics
Suppresses other characteristics

'XYZ' Instructor Notes

Module 'X' - <name of module> 9

Page 9

Source:
17

a + b = 10

Class
Course

Properties
Name

Location
Days offered
Credit hours

Start time
End time

Behavior
Add a student

Delete a student
Get course roster

Determine if it is full

Sample Class

Source:
18

Professor

Professor Clark

a + b = 10

Representing Classes

A class is represented using a
compartmented rectangle

'XYZ' Instructor Notes

Module 'X' - <name of module> 10

Page 10

Source:
19

Professor
name
empID

create()
save()
delete()
change()

Class Name

Attributes

Operations

Class Compartments

A class is comprised of three sections
The first section contains the class name
The second section shows the structure
(attributes)
The third section shows the behavior
(operations)

Source:
20

Classes of Objects

How many classes do you see?

'XYZ' Instructor Notes

Module 'X' - <name of module> 11

Page 11

Source:
21

Objects Class

Professor Smith

Professor Jones

Professor Mellon

Professor

The Relationship Between Classes and Objects

A class is an abstract definition of an object
It defines the structure and behavior of each
object in the class
It serves as a template for creating objects

Objects are grouped into classes

Source:
22

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 12

Page 12

Source:
23

:CourseOffering
number = 101
startTime = 900
endTime = 1100

:CourseOffering
number = 104
startTime = 1300
endTime = 1500

CourseOffering
number
startTime
endTime

Class

Attribute

Object

Attribute Value

What is an Attribute?

Source:
24

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 13

Page 13

Source:
25

CourseOffering

addStudent
deleteStudent
getStartTime
getEndTime

Class

Operation

What is an Operation?

Source:
26

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 14

Page 14

Source:
27

Manufacturer A
Manufacturer B

Manufacturer C

OO Principle:
Encapsulation

What is Polymorphism?

The ability to hide many different
implementations behind a single interface

Source:
28

Tube

Pyramid

Cube

Shape

Draw
Move
Scale
Rotate

<<interface>>

Realization relationship (stay tuned for realization relationships)

What is an Interface?

Interfaces formalize polymorphism
Interfaces support “plug-and-play”
architectures

'XYZ' Instructor Notes

Module 'X' - <name of module> 15

Page 15

Source:
29

Tube

Pyramid

Cube

Shape
Draw
Move
Scale
Rotate

<<interface>>

Tube

Pyramid

CubeShape

Elided/Iconic
Representation
(“lollipop”)

Canonical
(Class/Stereotype)
Representation

(stay tuned for realization relationships)

Interface Representations

Source:
30

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 16

Page 16

Source:
31

Source File
Name

<<EXE>>
Executable
Name

OO Principle:
Encapsulation

What is a Component?

A non-trivial, nearly independent, and
replaceable part of a system that fulfills a
clear function in the context of a well-
defined architecture
A component may be

A source code component
A run time components or
An executable component

<<DLL>>
Component
NameComponent

Interface

Source:
32

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 17

Page 17

Source:
33

Package Name
OO Principle:

Modularity

What is a Package?

A package is a general purpose mechanism
for organizing elements into groups
A model element which can contain other
model elements

Uses
Organize the model under development
A unit of configuration management

Source:
34

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

'XYZ' Instructor Notes

Module 'X' - <name of module> 18

Page 18

Source:
35

OO Principles: Encapsulation and Modularity

<<subsystem>>
Subsystem Name

Interface
Interface

Realization
Subsystem

(stay tuned for realization relationship)

What is a Subsystem?

A combination of a package (can contain
other model elements) and a class (has
behavior)
Realizes one or more interfaces which
define its behavior

Source:
36

Component
Name

Design Model Implementation Model

<<subsystem>>
Component Name

Component
Interface

Component
Interface

OO Principles: Encapsulation and Modularity

Subsystems and Components

Components are the physical realization of
an abstraction in the design
Subsystems can be used to represent the
component in the design

'XYZ' Instructor Notes

Module 'X' - <name of module> 19

Page 19

Source:
37

Basic Concepts of Object Orientation

Object
Class
Attribute
Operation
Interface (Polymorphism)
Component
Package
Subsystem
Relationships

Source:
38

Relationships

Association
Whole-Part

Aggregation
Composition

Generalization
Realization

'XYZ' Instructor Notes

Module 'X' - <name of module> 20

Page 20

Source:
39

Professor UniversityWorks for

Class

Association

Association Name

Professor University
EmployerEmployee

Role Names

Relationships: Association

Models a semantic connection among
classes

Source:
40

Association: Multiplicity and Navigation

Multiplicity defines how many objects
participate in a relationships

The number of instances of one class related
to ONE instance of the other class
Specified for each end of the association

Associations and aggregations are bi-
directional by default, but it is often
desirable to restrict navigation to one
direction

If navigation is restricted, an arrowhead is
added to indicate the direction of the navigation

'XYZ' Instructor Notes

Module 'X' - <name of module> 21

Page 21

Source:
41

Association: Multiplicity

2..4

0..1

1..*

0..*

1

*

Unspecified
Exactly one
Zero or more (many, unlimited)

One or more
Zero or one
Specified range
Multiple, disjoint ranges 2, 4..6

Source:
42

Student Schedule

Whole

Aggregation

Part

Relationships: Aggregation

A special form of association that models a
whole-part relationship between an
aggregate (the whole) and its parts

'XYZ' Instructor Notes

Module 'X' - <name of module> 22

Page 22

Source:
43

Student Schedule

Whole

Aggregation

Part

Relationships: Composition

A form of aggregation with strong
ownership and coincident lifetimes

The parts cannot survive the whole/aggregate

Source:
44

Student Schedule1 0..*

Multiplicity

Navigation

Example: Multiplicity and Navigation

'XYZ' Instructor Notes

Module 'X' - <name of module> 23

Page 23

Source:
45

Relationships: Generalization

A relationship among classes where one
class shares the structure and/or behavior
of one or more classes
Defines a hierarchy of abstractions in which
a subclass inherits from one or more
superclasses

Single inheritance
Multiple inheritance

Generalization is an “is-a-kind of”
relationship

Source:
46

Account
balance
name
number

Withdraw()
CreateStatement()

Checking

Withdraw()

Savings

GetInterest()
Withdraw()

Superclass
(parent)

Subclasses

Generalization
Relationship

Ancestor

Descendents

Example: Single Inheritance

One class inherits from another

'XYZ' Instructor Notes

Module 'X' - <name of module> 24

Page 24

Source:
47

Airplane Helicopter Wolf Horse

FlyingThing Animal

Bird

multiple
inheritance

Use multiple inheritance only when needed, and
always with caution !

Example: Multiple Inheritance

A class can inherit from several other
classes

Source:
48

Inheritance leverages the similarities among classes

What Gets Inherited?

A subclass inherits its parent’s attributes,
operations, and relationships
A subclass may:

Add additional attributes, operations,
relationships
Redefine inherited operations (use caution!)

Common attributes, operations, and/or
relationships are shown at the highest
applicable level in the hierarchy

'XYZ' Instructor Notes

Module 'X' - <name of module> 25

Page 25

Source:
49

Truck

tonnage

GroundVehicle

weight
licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
Superclass

(parent)

Subclass

generalization

size

Example: What Gets Inherited

Source:
50

Introduction to Object Orientation Topics

Basic Principles of Object Orientation
Basic Concepts of Object Orientation
Strengths of Object Orientation

'XYZ' Instructor Notes

Module 'X' - <name of module> 26

Page 26

Source:
51

Strengths of Object Orientation

A single paradigm
Facilitates architectural and code reuse
Models more closely reflect the real world

More accurately describe corporate data and
processes
Decomposed based on natural partitioning
Easier to understand and maintain

Stability
A small change in requirements does not mean
massive changes in the system under
development

Source:
52

Class Diagram for the Sales Example

Salesperson Product

Sale

Corporate

Customer

Individual Truck

Vehicle

Train

seller buyer item sold shipping mechanism

'XYZ' Instructor Notes

Module 'X' - <name of module> 27

Page 27

Source:
53

Effect of Requirements Change

Suppose you need a
new type of shipping
vehicle ...

Salesperson Product

Sale

Corporate

Customer

Individual Truck

Vehicle

Train

seller buyer item sold shipping mechanism

Change involves adding a new subclass

Airplane

Source:
54

Let us practice the OOAD
using a real case study !

Development of
Enterprise Project Management System

