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Inference With Variance Unknown…
Previously, we looked at estimating and testing the 
population mean when the population standard deviation (   ) 
was known or given:

But how often do we know the actual population variance? 

Instead we use the Student t statistic given by:
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Instead, we use the Student t-statistic, given by:

Inference With Variance Unknown…
When      is unknown, we use its point estimator s

and the z-statistic is replaced by the the t-statistic, where the 
number of “degrees of freedom”     , is n–1.
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Testing    when     is unknown…
When the population standard deviation is unknown and the 
population is normal, the test statistic for testing hypotheses 
about     is:

which is Student t distributed with    = n–1 degrees of 
freedom. The confidence interval estimator of      is given by:
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Example 12.1
It is likely that in the near future nations will have to do 
more to save the environment. 

Possible actions include reducing energy use and recycling. 

Currently (2007) most products manufactured from recycled 
material are considerably more expensive than those 
manufactured from material found in the earth. 
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Example 12.1
Newspapers are an exception. 

It can be profitable to recycle newspaper. 

A major expense is the collection from homes. In recent 
years a number of companies have gone into the business of 
collecting used newspapers from households and recycling 
them. 

12.7

A financial analyst for one such company has recently 
computed that the firm would make a profit if the mean 
weekly newspaper collection from each household exceeded 
2.0 pounds. 

Example 12.1                          
In a study to determine the feasibility of a recycling plant, a 
random sample of 148 households was drawn from a large 
community, and the weekly weight of newspapers discarded 
for recycling for each household was recorded Xm12 01*for recycling for each household was recorded. Xm12-01*

Do these data provide sufficient evidence to allow the 
analyst to conclude that a recycling plant would be profitable?

12.8



Example 12.1
Our objective is to describe the population of the amount of 
newspaper discarded per household, which is an interval 
variable. Thus the parameter to be tested is the population 

IDENTIFY

mean µ. 

We want to know if there is enough evidence to conclude 
that the mean is greater than 2. Thus,

H1: µ  > 2

12.9

1 µ

Therefore we set our usual null hypothesis to:

H0: µ = 2

Example 12.1
The test statistic is:

ν = n −1

IDENTIFY
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Because the alternative hypothesis is:

H1: µ   > 2

the rejection region becomes:
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Example 12.1
From the data we determine :
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The Value of the test statistic :

Example 12.1 COMPUTE
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Example 12.1 COMPUTE

t-Test: Mean

NewspaperNewspaper
Mean 2.1804
Standard Deviation 0.9812
Hypothesized Mean 2
df 147
t Stat 2.2369
P(T t) t il 0 0134
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:
:

P(T<=t) one-tail 0.0134
t Critical one-tail 2.352
P(T<=t) two-tail 0.0268
t Critical two-tail 2.6097

Example 12.1
The value of the test statistic is t = 2.24 and its p-value is .0134. 

There is not enough evidence to infer that the mean weight of 

INTERPRET

discarded newspapers is greater than 2.0. 

Note that there is some evidence; the p-value is .0134. 
However, because we wanted the Type I error to be small we 
insisted on a 1% significance level. 

12.14

Thus, we cannot conclude that the recycling plant would be 
profitable.



Example 12.2
In 2004 (the latest year reported) 130,134,000 tax returns 
were files in the United States. 

The Internal Revenue Service (IRS) examined 0.77% or 
1,008,000 of them to determine if they were correctly done. 

To determine how well the auditors are performing a random 
sample of these returns was drawn and the additional tax was 
reported Xm12 02
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reported. Xm12-02

Estimate with 95% confidence the mean additional income 
tax collected from the 1,008,000 files audited.  

Example 12.2
The objective is to describe the population of additional tax 
collected. 

IDENTIFY

The data are interval. 

The parameter to be estimated is the mean additional tax. 

Th fid i l i i
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The confidence interval estimator is 



Example 12.2
From the date we determine : 
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1 209 1n  
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95% confidence interval estimate:

Example 12.2 COMPUTE
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Example 12.2 COMPUTE

1
2

A B C D
t-Estimate: Mean

3
4
5
6
7

Taxes
Mean 6001
Standard Deviation 2864
LCL 5611
UCL 6392

12.19

Example 12.2…
We estimate that the mean additional tax collected  lies 
between $5,611 and  $6,392 . 

INTERPRET

We can use this estimate to help decide whether the IRS is 
auditing the individuals who should be audited.
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Check Required Conditions
The Student t distribution is robust, which means that if the 
population is nonnormal, the results of the t-test and 
confidence interval estimate are still valid provided that the 
population is “not extremely nonnormal”.

To check this requirement, draw a histogram of the data and 
see how “bell shaped” the resulting figure is. If a histogram 
is extremely skewed (say in the case of an exponential 

12.21

distribution), that could be considered “extremely nonnormal”
and hence t-statistics would be not be valid in this case.

Histogram for Example 12.1
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Histogram for Example 12.2
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Estimating Totals of Finite Populations
The inferential techniques introduced thus far were derived 
by assuming infinitely large populations. In practice 
however, most populations are finite. 

When the population is small we must adjust the test statistic 
and interval estimator using the finite population correction 
factor introduced in Chapter 9. 

However in populations that are large relative to the sample
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However, in populations that are large relative to the sample 
size we can ignore the correction factor. Large populations 
are defined as populations that are at least 20 times the 
sample size. 



Estimating Totals of Finite Populations
Finite populations allow us to use the confidence interval 
estimator of a mean to produce a confidence interval 
estimator of the population total. 

To estimate the total we multiply the lower and upper 
confidence limits of the estimate of the mean by the 
population size. 
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Thus, the confidence interval estimator of the total is


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Estimating Totals of Finite Population
For example, a sample of 500 households (in a city of 1 
million households) reveals a 95% confidence interval 
estimate that the household mean spent on Halloween candy 
lies between $20 & $30.

We can estimate the total amount spent in the city by 
multiplying these lower and upper confidence limits by the 
total population:
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Thus we estimate that the total amount spent on Halloween 
in the city lies between $20 million and $30 million.



Developing an Understanding of Statistical Concepts 

The t-statistic like the z-statistic measures the difference 
between the sample mean and the hypothesized value of  in 
terms of the number of standard errors. 

However, when the population standard deviation  is 
unknown we estimate the standard error as 

n/s
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Developing an Understanding of Statistical Concepts 

When we introduced the Student t distribution in Section 8.4 
we pointed out that it is more widely spread out than the 
standard normal. 

This circumstance is logical. 

The only variable in the z-statistic is the sample mean, which 
will vary from sample to sample

12.28

will vary from sample to sample. 



Developing an Understanding of Statistical Concepts 

The t-statistic has two variables, the sample mean  and the 
sample standard deviation s, both of which will vary from 
sample to sample. 

Because of this feature the t-statistic will display greater 
variability. 

12.29

Identifying Factors
Factors that identify the t-test and estimator of     :
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Inference About Population Variance
If we are interested in drawing inferences about a 

population’s variability, the parameter we need to 

investigate is the population variance: σ2investigate is the population variance: σ

The sample variance (s2) is an unbiased, consistent and 

efficient point estimator for σ2. Moreover, 

12.31

the statistic,                       , has a chi-squared distribution, 

with n–1 degrees of freedom.

Testing & Estimating Population Variance
The test statistic used to test hypotheses about  σ2 is:

which is chi-squared with ν = n–1 degrees of freedom.
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Testing & Estimating Population Variance
Combining this statistic:

With the probability statement:

Yields the confidence interval estimator for       :

12.33

lower confidence limit upper confidence limit

Example 12.3…
Container-filling machines are used to package a variety of 
liquids; including milk, soft drinks, and paint. 

Id ll h f li id h ld l li h lIdeally, the amount of liquid should vary only slightly, 
since large variations will cause some containers to be 
underfilled (cheating the customer) and some to be 
overfilled (resulting in costly waste). 

The president of a company that developed a new type of

12.34

The president of a company that developed a new type of 
machine boasts that this machine can fill 1 liter (1,000 
cubic centimeters) containers so consistently that the 
variance of the fills will be less than 1. 



Example 12.3
To examine the veracity of the claim, a random sample of 
25 l-liter fills was taken and the results (cubic centimeters) 
recorded. Xm12-03

Do these data allow the president to make this claim at the 
5% significance level?

12.35

Example 12.3…
The problem objective is to describe the population of l-liter 

fills from this machine. 

IDENTIFY

The data are interval, and we're interested in the variability 

of the fills. 

It follows that the parameter of interest is the population 

i 2
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variance σ2. 



Example 12.3…
Because we want to determine whether there is enough 

evidence to support the claim, the alternative hypothesis is

IDENTIFY

1:H 2 

The null hypothesis is

d h i i ill i

  1:H1 

  1:H 2
0 
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and the test statistic we will use is

 
2

2
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Example 12.3…
Using a calculator, we find

COMPUTE

24,992.0ix  2
24,984,017.76ix and

The value of the test statistic :

2
2

2
( )

2

(24,992.0)
24,984,017.76

25 .6333
1 25 1

i
i

x
x

ns
n

 
  

 



12.38

2
2

2

( 1) (25 1)(.6333)
15.20

1

n s
x


 

  

2 2 2 2
1 , 1 1 .05,25 1 .95,24 13.85nx X x x      



Example 12.3 COMPUTE

1
2
3
4

A B C D
Chi Squared Test: Variance

Fills
Sample Variance 0 63334

5
6
7
8
9
10
11

Sample Variance 0.6333
Hypothesized Variance 1
df 24
chi-squared Stat 15.20
P (CHI<=chi) one-tail 0.0852
chi-squared Critical one tail Left-tail 13.85

Right-tail 36.42
P (CHI<=chi) two-tail 0.1705

12.39

12
13

chi-squared Critical two tail Left-tail 12.40
Right-tail 39.36

Example 12.3
There is not enough evidence to infer that the claim is true. 

As we discussed before the result does not say that the

INTERPRET

As we discussed before, the result does not say that the 

variance is equal to 1; it merely states that we are unable to 

show that the variance is less than 1. 
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Example 12.4

2 2
/2, 1 .005,24 45.56nx x   

2 2
1 /2, 1 .995,24 9.89nx x   

2

2

( 1) 15.20
.3336

45 56

n s
LCL

x


  

12.41

/2 45.56x

2

2
1 /2

( 1) 15.20
1.537

9.89

n s
UCL

x 


  

Example 12.4
Estimate with 99% confidence the variance of fills in 

Example 12.3. Xm12-03

A B
1
2
3
4
5

A B
Chi Squared Estimate: Variance

Fills
Sample Variance 0.6333
df 24

12.42

5
6
7

df 24
LCL 0.3336
UCL 1.5375



Example 12.4…
In Example 12.3, we saw that there was not sufficient 

evidence to infer that the population variance is less than 1. 

INTERPRET

Here we see that is estimated to lie between .3336 and 

1.5375. 

Part of this interval is above 1, which tells us that the 

12.43

variance may be larger than 1, confirming the conclusion we 

reached in Example 12.3. 

Example 12.4…
We may be able to use the estimate to predict the percentage 

of overfilled and underfilled bottles. 

INTERPRET

This may allow us to choose among competing machines.
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Identifying Factors…
Factors that identify the chi-squared test and estimator of     :

12.45

Inference: Population Proportion…
When data are nominal, we count the number of occurrences 
of each value and calculate proportions. Thus, the parameter 
of interest in describing a population of nominal data is the 
population proportion p.

This parameter was based on the binomial experiment.

Recall the use of this statistic:

12.46

Recall the use of this statistic:

where p-hat (   ) is the sample proportion: x successes in a 
sample size of n items.



Inference: Population Proportion…
When np and n(1–p) are both greater than 5, the sampling 
distribution of     is approximately normal with

mean:

standard deviation:

H

12.47

Hence:

Inference: Population Proportion
Test statistic for p:

The confidence interval estimator for p is given by:

12.48

(both of which require that np>5 and n(1–p)>5)



Example 12.5
After the polls close on election day networks compete to be 
the first to predict which candidate will win. 

The predictions are based on counts in certain precincts and 
on exit polls. 

Exit polls are conducted by asking random samples of voters 
who have just exited from the polling booth (hence the name)

12.49

who have just exited from the polling booth (hence the name) 
for which candidate they voted. 

Example 12.5
In American presidential elections the candidate who 
receives the most votes in a state receives the state’s entire 
Electoral College vote. 

In practice, this means that either the Democrat or the 
Republican candidate will win. 

Suppose that the results of an exit poll in one state were

12.50

Suppose that the results of an exit poll in one state were 
recorded where 1 = Democrat and 2 = Republican.

Xm12-05*



Example 12.5
The polls close at 8:00 P.M. 

Can the networks conclude from these data that theCan the networks conclude from these data that the 
Republican candidate will win the state? 

Should the network announce at 8:01 P.M. that the 
Republican candidate will win?

12.51

Example 12.5
The problem objective is to describe the population of votes 
in the state. The data are nominal because the values are 
“Democrat” and “Republican.” Thus the parameter to be 
tested is the proportion of votes in the entire state that are for

IDENTIFY

tested is the proportion of votes in the entire state that are for 
the Republican candidate. Because we want to determine 
whether the network can declare the Republican to be the 
winner at 8:01 P.M., the alternative hypothesis is 

H1: p > .50
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1 p

And hence our null hypothesis becomes:
H0: p = .50 



Example 12.5
The test statistic is

IDENTIFY

pp̂
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n/)p1(p
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

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Example 12.5
The rejection region is

COMPUTE
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Example 12.5 COMPUTE

 
1
2
3

A B C D
z-Test: Proportion

Votes3
4
5
6
7
8
9

Votes
Sample Proportion 0.532
Observations 765
Hypothesized Proportion 0.5
z Stat 1.77
P(Z<=z) one-tail 0.0382
z Critical one-tail 1.6449

12.55

10
11

P(Z<=z) two-tail 0.0764
z Critical two-tail 1.96

Example 12.5
At the 5% significance level we reject the null hypothesis 
and conclude that there is enough evidence to infer that the 
Republican candidate will win the state.

INTERPRET

However, is this the right decision?

One of the key issues to consider here is the cost of Type I 
d T II

12.56

and Type II errors. 

A Type I error occurs if we conclude that the Republican 
will win when in fact he has lost. 



Example 12.5
Such an error would mean that a network would announce at 
8:01 P.M. that the Republican has won and then later in the 
evening would have to admit to a mistake. 

INTERPRET

If a particular network were the only one that made this error 
it would cast doubt on their integrity and possibly affect the 
number of viewers. 
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Example 12.5
This is exactly what happened on the evening of the U. S. 
presidential elections in November 2000. 

INTERPRET

Shortly after the polls closed at 8:00 P.M. all the networks 
declared that the Democratic candidate Albert Gore would 
win in the state of Florida. 

A couple of hours later, the networks admitted that a mistake 
had been made and the Republican candidate George W
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had been made and the Republican candidate George W. 
Bush had won. 



Example 12.5
Several hours later they again admitted a mistake and finally 
declared the race too close to call. 

INTERPRET

Fortunately for each network all the networks made the same 
mistake. 

However, if one network had not done this it would have 
developed a better track record, which could have been used 
in future advertisements for news shows and likely drawn

12.59

in future advertisements for news shows and likely drawn 
more viewers. 

Considering the costs of Type I and II errors it would have 
been better to use a 1%significance level.

Estimating Totals for Large Populations
In much the same way as we saw earlier, when a population 
is large and finite we can estimate the total number of 
successes in the population by taking the product of the size 
of the population (N) and the confidence interval estimator:

The Nielsen Ratings (used to measure TV audiences) uses

12.60

The Nielsen Ratings (used to measure TV audiences) uses 
this technique. Results from a small sample audience (5,000 
viewers) is extrapolated to the total number of TV 
households (110 million).



Nielsen Ratings
Statistical techniques play a vital role in helping advertisers 
determine how many viewers watch the shows that they 
sponsor. 

Although several companies sample television viewers to 
determine what shows they watch, the best known is the A. 
C. Nielsen firm. 
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The Nielsen ratings are based on a random sample of 
approximately 5,000 of the 110 million households in the 
United States with at least one television (in 2007). 

Nielsen Ratings
A meter attached to the televisions in the selected 
households keeps track of when the televisions are turned on 
and what channels they are tuned to. 

The data are sent to the Nielsen’s computer every night from 
which Nielsen computes the rating and sponsors can 
determine the number of viewers and the potential value of 
any commercials.
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Nielsen Ratings
The results from Sunday, April 1, 2007 for the time slot 9:00 to 

9:30 P.M. have been recorded using the following codes:

Network Show Code

ABC Desperate Housewives 1

CBS The Amazing Race 11 2

NBC Deal or No Deal 3

Fox Family Guy 4

12.63

Fox Family Guy 4

Television turned off or watched another channel 5

Nielsen Ratings IDENTIFY

The problem objective is to describe the population of 
television shows watched by viewers across the country.  

The data are nominalThe data are nominal. 

The combination of problem objective and data type make the 
parameter to be estimated the proportion of the entire 
population that watched the “Deal or No Deal.”  
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The confidence interval estimator of the proportion is

n

)p̂1(p̂
zp̂ 2/


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Nielsen Ratings Example COMPUTE

1
2

A B
z-Estimate: Proportion

Program2
3
4
5
6

Program
Sample Proportion 0.0836
Observations 5000
LCL 0.0759
UCL 0.0913

12.65

Nielsen Ratings INTERPRET

We estimate that between 7.59% and 9.13% of all television 
sets had received “Deal or No Deal.” 

If we multiply these figures by the total number of 
televisions, 110 million, we produce an interval estimate of 
the number of televisions tuned to “Deal or No Deal“. 
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Nielsen Ratings INTERPRET

Thus, the 95% confidence interval estimate of the number of 
televisions tuned to “Deal or No Deal” lies between 

LCL = .0759 (110 million) = 8.349 million
and

UCL = .0913 (110 million) = 10.043 million

Sponsoring companies can then determine the value of any 

12.67

commercials that appeared on the show.

Selecting the Sample Size
When we introduced the sample size selection method to 

estimate a mean in Section 10.3, we pointed out that the 

sample size depends on the confidence level and the boundsample size depends on the confidence level and the bound 

on the error of estimation that the statistics practitioner is 

willing to tolerate. 

When the parameter to be estimated is a proportion the 
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bound on the error of estimation is

n

)p̂1(p̂
zB 2/


 



Selecting the Sample Size
Solving for n we produce the required sample size to 

estimate p and where B is the bound on the error of 

EstimationEstimation

  2

2/

B
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n
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ˆ
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Unfortunately we do not know the value of .p̂

Selecting the Sample Size
Two methods – in each case we choose a value for       then

solve the equation for n.

Method 1 : no knowledge of even a rough value of     . This 
is a ‘worst case scenario’ so we substitute    = .50

Method 2 : we have some idea about the value of     . This is 
a better scenario and we substitute in our estimated value

12.70

a better scenario and we substitute in our estimated      value.



Selecting the Sample Size
Method 1 :: no knowledge of value of     , use 50%:

Method 2 :: some idea about a possible      value, say 20%:

12.71

Thus, we can sample fewer people if we already have a 
reasonable estimate of the population proportion before 
starting.

Identifying Factors
Factors that identify the z-test and interval estimator of p:
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APPLICATIONS IN MARKETING: Market Segmentation

Mass marketing refers to the mass production and 
marketing by a company of a single product for the entire 
marketmarket.  

Mass marketing is especially effective for commodity 
goods such as gasoline, which are very difficult to 
differentiate from the competition, 

12.73

It has given way to target marketing, which focuses on 
satisfying the demands of a particular segment of the entire 
market. 

APPLICATIONS IN MARKETING: Market Segmentation

Because there is no single way to segment a market, 
managers must consider several different variables (or 
characteristics) that could be used to identify segments.  

Surveys of customers are used to gather data about various 
aspects of the market, and statistical techniques are applied 
to define the segments. 
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Market segmentation separates consumers of a product into 
different groups in such a way that members of each group 
are similar to each other and there are differences between 
groups. 



APPLICATIONS IN MARKETING: Market Segmentation

There are many ways to segment a market. 

Table 12.1 lists several different segmentation variables 
and their market segments. 
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Table 12.1 Market Segmentation

Segmentation variable Segments
Geographic

Countries Brazil, Canada, China, France, United States
Country regions Midwest, Northeast, Southwest, Southeast

Demographic
Age Under 5, 5- 12, 13-19, 20-29, 30-50, over 50

Education Some high school, high school graduate, some college, 
college or university graduate

Income Under $30,000, $30,000-49,999, 

12.76

$50,000- 79,999, over $80,000

Marital status Single, married, divorced, widowed



APPLICATIONS IN MARKETING: Market Segmentation

It is important for marketing managers to know the size of 
the segment because the size (among other parameters) 
determines its profitability. 

Not all segments are worth pursuing. In some instances the 
size of the segment is too small or the costs of satisfying it 
may be too high. 
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APPLICATIONS IN MARKETING: Market Segmentation

The size can be determined in several ways. 

The census provides useful informationThe census provides useful information. 

For example, we can determine the number of Americans 
in various age categories or the size of geographic 
residences. 
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For other segments we may need to survey members of a 
general population and use the inferential techniques 
introduced in the previous section where we showed how 
to estimate the total number of successes. 



APPLICATIONS IN MARKETING: Market Segmentation

We can survey large populations to estimate the proportion 
of the population that fall into each segment. 

From these estimates we can estimate the size of markets 
using the confidence interval estimator
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Example 12.6
In segmenting the breakfast cereal market a food 
manufacturer uses health and diet consciousness as the 
segmentation variable. Four segments are developed: 

1. Concerned about eating healthy foods

2. Concerned primarily about weight
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3. Concerned about health because of illness

4. Unconcerned



Example 12.6
To distinguish between groups surveys are conducted. On the 
basis of a questionnaire people are categorized as belonging to 
one of these groups. 

A recent survey asked a random sample of 1250 American adults 
(20 and over) to complete the questionnaire. The categories were 
recorded using the codes. Xm12-06

The most recent census reveals that there are 207 347 000
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The most recent census reveals that there are 207,347,000 
Americans who are 20 and over.  

Estimate with 95% confidence the number of American adults 
who are concerned about eating healthy foods.

Example 12.6
The problem objective is to describe the population of American 
adults’ concerns about health and diet. 

Th d t i l C tl th t i h t

IDENTIFY

The data are nominal. Consequently, the parameter we wish to 
estimate is the proportion p of American adults who classify 
themselves as concerned about eating healthy (code = 1). 

The confidence interval estimator we need to employ is

ˆˆ
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from which we will produce the estimate of the size of the market 
segment.

n
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Example 12.6 COMPUTE

 
1
2

A B
z-Estimate: Proportion

Gro p2
3
4
5
6

Group
Sample Proportion 0.2152
Observations 1250
LCL 0.1924
UCL 0.2380
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Example 12.6
We multiply the lower and upper limits by the population 
size. 

COMPUTE


LCL=                            = 207,347,000 (.1924) 

= 39,893,563

and 
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UCL =                           = 207,347,000 (.2380) 

= 49,348,586 
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Example 12.6
We estimate that the size of this market segment lies 
between 39,893,563 and 49,348,586.

INTERPRET
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