
Chapter 10

Introduction to Estimation

Statistical Inference…
Statistical inference is the process by which we acquire 
information and draw conclusions about populations from 
samples.

Statistics

Population

Sample

Inference

Data

Statistics

Information

In order to do inference, we require the skills and knowledge of descriptive statistics, 
probability distributions, and sampling distributions.

Parameter
Statistic
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Estimation…
There are two types of inference: estimation and hypothesis 
testing; estimation is introduced first.

The objective of estimation is to determine the approximate 
value of a population parameter on the basis of a sample 
statistic.

E g the sample mean ( ) is employed to estimate theE.g., the sample mean (     ) is employed to estimate the 
population mean (     ).
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Estimation…
The objective of estimation is to determine the approximate 
value of a population parameter on the basis of a sample 
statistic.

There are two types of estimators:

Point Estimator

Interval Estimator
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Point Estimator…
A point estimator draws inferences about a population by 
estimating the value of an unknown parameter using a single 
value or point.

We saw earlier that point probabilities in continuous 
distributions were virtually zero. Likewise, we’d expect that 
the point estimator gets closer to the parameter value with an p g p
increased sample size, but point estimators don’t reflect the 
effects of larger sample sizes. Hence we will employ the 
interval estimator to estimate population parameters…
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Interval Estimator…
An interval estimator draws inferences about a population 
by estimating the value of an unknown parameter using an 
interval.

That is we say (with some % certainty) that theThat is we say (with some ___% certainty) that the 
population parameter of interest is between some lower and 
upper bounds.
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Point & Interval Estimation…
For example, suppose we want to estimate the mean summer 
income of a class of business students. For n = 25 students, 

is calculated to be 400 $/week.

point estimate interval estimate

An alternative statement is:

The mean income is between 380 and 420 $/week.
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Qualities of Estimators…
Qualities desirable in estimators include unbiasedness, 

consistency, and relative efficiency:

An unbiased estimator of a population parameter is an 
estimator whose expected value is equal to that parameter.

An unbiased estimator is said to be consistent if the difference 
between the estimator and the parameter grows smaller as p g
the sample size grows larger.

If there are two unbiased estimators of a parameter, the one 
whose variance is smaller is said to be relatively efficient.
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Unbiased Estimators…
An unbiased estimator of a population parameter is an 
estimator whose expected value is equal to that parameter.

E.g. the sample mean X is an unbiased estimator of the 
population mean µ , since:

E(X) = µ

10.9

Unbiased Estimators…

An unbiased estimator of a population parameter is an 
estimator whose expected value is equal to that parameter.

E.g. the sample median is an unbiased estimator of the 
population mean µ since:

E(Sample median) = µ
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Consistency…
An unbiased estimator is said to be consistent if the 
difference between the estimator and the parameter grows 
smaller as the sample size grows larger.

E.g. X is a consistent estimator of µ because:

V(X) is σ2/n

That is, as n grows larger, the variance of X grows smaller.
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Consistency…
An unbiased estimator is said to be consistent if the 
difference between the estimator and the parameter grows 
smaller as the sample size grows larger.

E.g. Sample median is a consistent estimator of µ because:

V(Sample median) is 1.57σ2/n

That is, as n grows larger, the variance of the sample median  
grows smaller.
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Relative Efficiency…
If there are two unbiased estimators of a parameter, the one 
whose variance is smaller is said to be relatively efficient.

E.g. both the the sample median and sample mean are 
unbiased estimators of the population mean, however, the 
sample median has a greater variance than the sample mean, 
so we choose      since it is relatively efficient when 
compared to the sample median. 

Thus, the sample mean      is the “best” estimator of a 
population mean µ.
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Estimating    when     is known…
In Chapter 8 we produced the following general probability 
statement about X

  1)ZZZ(P 2/2/

And from Chapter 9 the sampling distribution of       is 
approximately normal with mean µ and standard deviation

Thus 

 2/2/

X
n/

X
Z



is (approximately) standard normally distributed. 

n/
Z





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Estimating    when     is known…
Thus, substituting Z we produce





  1)z

n/

x
z(P 2/2/

In Chapter 9 (with a little bit of algebra) we expressed the following

Wi h li l bi f diff l b h

 n/
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With a little bit of different algebra we have 
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Estimating µ when σ is known…
This  







 
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is still a probability statement about

H h i l fid i l i f

 nn

.x

However, the statement is also a confidence interval estimator of µ 
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Estimating    when     is known…
The interval can also be expressed as

Lower confidence limit = 






 
 zx 2/

Upper confidence limit =

The probability 1 – α is the confidence level, which is a measure of 

 n







 

 
n

zx 2/

how frequently the interval will actually include µ.
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Graphical Demonstration of the Confidence 
Interval for 
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Graphically…
…the actual location of the population mean      …
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…may be here… …or here… …or possibly even here…

The population mean is a fixed but unknown quantity. Its incorrect to interpret the 
confidence interval estimate as a probability statement about   . The interval acts as the 
lower and upper limits of the interval estimate of the population mean.

The Confidence Interval for  (  is known)

Four commonly used confidence levels

Confidence 
level  
0.90 0.10 0.05 1.645
0.95 0.05 0.025 1.96
0.98 0.02 0.01 2.33
0.99 0.01 0.005 2.575

z
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150

The confidence interval are correct most, but not all, 
of the time.

The confidence interval 

50

100

150

Not all the confidence intervals cover 
the real expected value of 100

LCL

UCL
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0

the real expected value of 100.

1000
The selected confidence level is 90%,
and 10 out of 100 intervals do not cover
the real m.

95% Confidence Intervals for 

 X

95%

X
X

X
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E.g.  Estimate the mean value of the distribution resulting from
the throw of a fair die. It is known that s = 1.71.  Use a 90% 
confidence level, and 100 repeated throws of the die

The Confidence Interval for  (  is known)

Solution: The confidence interval is  




 
n

zx 2 28.x
100

71.1
645.1x 
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The mean values obtained in repeated draws of samples of size
100 result in  interval estimators of the form 

[sample mean - .28, Sample mean + .28],
90% of which cover the real mean of the distribution.

The Confidence Interval for  (  is known)

Recalculate the confidence interval for 95% confidence level.

Solution: 




 
n

zx 2 34.x
100

71.1
96.1x 
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34.x 34.x 

.95

.90

28.x 28.x 



The Confidence Interval for  (  is known)

The width of the 90% confidence interval = 2(.28) = .56

The width of the 95% confidence interval = 2(.34) = .68

Because the 95% confidence interval is wider, it is more likely 
to include the value of 
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Example 10.1…
The Doll Computer Company makes its own computers and 
delivers them directly to customers who order them via the 
Internet. 

To achieve its objective of speed, Doll makes each of its five 
most popular computers and transports them to warehouses 
from which it generally takes 1 day to deliver a computer to 
the customer. 

This strategy requires high levels of inventory that add 
considerably to the cost. 
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Example 10.1…

To lower these costs the operations manager wants to use an 
inventory model. He notes demand during lead time is 
normally distributed and he needs to know the mean to 
compute the optimum inventory level. 

He observes 25 lead time periods and records the demand 
during each period.  Xm10-01

The manager would like a 95% confidence interval estimate 
of the mean demand during lead time. Assume that the 
manager knows that the standard deviation is 75 computers. 
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Example 10.1…
“We want to estimate the mean demand over lead time with 
95% confidence in order to set inventory levels…”

Thus, the parameter to be estimated is the population mean:µ

And so our confidence interval estimator will be:

IDENTIFY

10.28



Example 10.1…
In order to use our confidence interval estimator, we need the 
following pieces of data:

370.16 Calculated from the data…

COMPUTE

370.16

1.96

75

n 25
Given

therefore:

The lower and upper confidence limits are 340.76 and 399.56.
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Example 10.1

 
1
2

A B C
z-Estimate: Mean

3
4
5
6
7

Demand
Mean 370.16
Standard Deviation 80.78
Observations 25
SIGMA 75

8
9

LCL 340.76
UCL 399.56
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Example 10.1…
The estimation for the mean demand during lead time lies 
between 340.76 and 399.56 — we can use this as input in 
developing an inventory policy.

INTERPRET

That is, we estimated that the mean demand during lead time 
falls between 340.76 and 399.56, and this type of estimator 
is correct 95% of the time. That also means that 5% of the 
time the estimator will be incorrect. 

Incidentally, the media often refer to the 95% figure as “19 
times out of 20,” which emphasizes the long-run aspect of 
the confidence level.
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Interpreting the confidence Interval Estimator

Some people erroneously interpret the confidence interval 
estimate in Example 10.1 to mean that there is a 95% 
probability that the population mean lies between 340.76 and 
399.56. 

This interpretation is wrong because it implies that the 
population mean is a variable about which we can make 
probability statements. 

In fact, the population mean is a fixed but unknown quantity. 
Consequently, we cannot interpret the confidence interval 
estimate of µ as a probability statement about µ. 
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Interpreting the confidence Interval Estimator

To translate the confidence interval estimate properly, we 
must remember that the confidence interval estimator was 
derived from the sampling distribution of the sample mean. 

We used the sampling distribution to make probability 
statements about the sample mean. 

Although the form has changed the confidence intervalAlthough the form has changed, the confidence interval 
estimator is also a probability statement about the sample 
mean. 
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Interpreting the confidence Interval Estimator

It states that there is 1 - α probability that the sample mean will be 
equal to a value such that the interval 





 

zx

to 







 
n

zx 2/








 
 

n
zx 2/

will include the population mean. Once the sample mean is 
computed, the interval acts as the lower and upper limits of the 
interval estimate of the population mean.
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Interpreting the Confidence Interval Estimator

As an illustration, suppose we want to estimate the mean value of the 
distribution resulting from the throw of a fair die. 

Because we know the distribution, we also know that µ = 3.5 and σ = 
1.71. 

Pretend now that we know only that  σ = 1.71, that µ is unknown, and 
that we want to estimate its value. 

To estimate , we draw a sample of size n = 100 and calculate. The 
confidence interval estimator of  is

10.35

Interpreting the Confidence Interval Estimator

The 90% confidence interval estimator is 

281x
71.1

6451xzx 2/ 


 281.x
100

645.1x
n

zx 2/  
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Interpreting the Confidence Interval Estimator

This notation means that, if we repeatedly draw samples of size 100 
from this population, 90% of the values of       will be such that µ 
would lie somewhere

x

and                 

and that 10% of the values of       will produce intervals that would not 
include µ . 

281.x  281.x 

x

Now, imagine that we draw 40 samples of 100 observations each. The 
values of and the resulting confidence interval estimates of are shown 
in Table 10.2. 

10.37

Interval Width…
A wide interval provides little information.

For example, suppose we estimate with 95% confidence that 
an accountant’s average starting salary is between $15,000 g g y ,
and $100,000. 

Contrast this with: a 95% confidence interval estimate of 
starting salaries between $42,000 and $45,000.

The second estimate is much narrower, providing accounting 
students more precise information about starting salaries.
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Interval Width…
The width of the confidence interval estimate is a function of 
the confidence level, the population standard deviation, and 
the sample size…

A larger confidence levelA larger confidence level

produces a w i d e r

confidence interval:

Estimators.xls
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Interval Width…
The width of the confidence interval estimate is a function of 
the confidence level, the population standard deviation, and 
the sample size…

Larger values of σLarger values of σ

produce w i d e r

confidence intervals

Estimators.xls
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Interval Width…
The width of the confidence interval estimate is a function of 
the confidence level, the population standard deviation, and 
the sample size…

Increasing the sample size decreases the width of the 
fid i t l hil th fid l l iconfidence interval while the confidence level can remain 

unchanged. Estimators.xls

Note: this also increases the cost of obtaining additional data
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Selecting the Sample Size…

In Chapter 5 we pointed out that sampling error is the 
difference between an estimator and a parameter. 

We can also define this difference as the error of estimation. 

In this chapter this can be expressed as the difference 
between      and µ.  x
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Selecting the Sample Size…

The bound on the error of estimation is

B =  
Z 2/

B  

With a little algebra we find the sample size to estimate a 
mean.

n
Z 2/

  2
2/z





 2/

B

z
n 







 
 
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Selecting the Sample Size…
To illustrate suppose that in Example 10.1 before gathering 
the data the manager had decided that he needed to estimate 
the mean demand during lead time to with 16 units, which is 
the bound on the error of estimation. 

We also have 1 –α = .95 and σ = 75. We calculate

 
4184

)75)(96.1(z 22
2/ 









  41.84

16

))((

B
n 2/ 













 
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Selecting the Sample Size…

Because n must be an integer and because we want the 
bound on the error of estimation to be no more than 16 any 
non-integer value must be rounded up. 

Thus, the value of n is rounded to 85, which means that to be 
95% confident that the error of estimation will be no larger 
than 16, we need to randomly sample 85 lead time intervals.
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/2 = 05/2  05

The Affects of  on the interval width

90%

Confidence level

n
)645.1(2

n
z2 05.






/2 = .05/2 = .05

5151

Suppose the standard 
deviation has increased 
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To maintain a certain level of confidence, a larger standard 
deviation requires a larger confidence interval.

n

5.1
)645.1(2

n

5.1
z2 05.





by 50%.



The Affects of Changing the Confidence 
Level

/2 = 2.5%/2 = 2.5%

/2 = 5%/2 = 5%

)6451(2z2


Confidence level 
90%
95%
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n
)96.1(2

n
z2 025.





n

)645.1(2
n

z2 05.  Let us increase the 
confidence level 
from 90%  to 95%.

Larger confidence level produces a wider confidence interval

90%

The Affects of Changing the Sample Size

90%

Confidence level

n
)645.1(2

n
z2 05.





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Increasing the sample size decreases the width of the confidence 
interval while the confidence level can remain unchanged.              


